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Abstract
In this paper we study the problem of estimating the unknown mean θ of a unit variance Gaussian
distribution in a locally differentially private (LDP) way. In the high-privacy regime (ϵ ≤ 0.67), we
identify the exact optimal privacy mechanism that minimizes the variance of the estimator asymp-
totically. It turns out to be the extraordinarily simple sign mechanism that applies randomized re-
sponse to the sign of Xi−θ. However, since this optimal mechanism depends on the unknown mean
θ, we employ a two-stage LDP parameter estimation procedure which requires splitting agents into
two groups. The first n1 observations are used to consistently but not necessarily efficiently esti-
mate the parameter θ by θ̃n1 . Then this estimate is updated by applying the sign mechanism with
θ̃n1

instead of θ to the remaining n− n1 observations, to obtain an LDP and efficient estimator of
the unknown mean.
Keywords: local differential privacy, statistical efficiency, Gaussian mean estimation

1. Introduction

We consider the problem of estimating the unknown mean of a unit variance normal distribution in
a locally differentially private and statistically efficient way. In this scenario, we have n agents or
data-holders, each of which owns data Xi sampled independently from the probability distribution
Pθ = N(θ, 1) which depends on the unknown mean parameter θ ∈ R. Denote the class of all
those potential data generating distributions by P = {Pθ : θ ∈ R}. We protect the privacy of the
data owners by local differential privacy. This means that each agent generates a sanitized version
Zi of their original data Xi independently of everybody else by applying a privacy mechanism
Q, which is a Markov kernel or a conditional distribution of Zi given Xi = x. In other words,
Q(A|x) = P (Zi ∈ A|Xi = x). From the privacy mechanism Q we can generate random variates
in some arbitrary space Z endowed with a sigma algebra G. We say that Q satisfies the ϵ-local
differential privacy property if

Q(A|x) ≤ eϵQ(A|x′)

for all x, x′ ∈ R and all events A ∈ G. We denote by Qϵ = Qϵ(R) the set of all possible such
privacy mechanisms taking inputs from R.

After each agent applied the privacy mechanism Q we obtain iid samples Z1, . . . Zn from the
distribution QPθ, which formally is the probability measure obtained by integrating Q with respect
to Pθ(dx). We can only use these samples to estimate the unknown parameter θ and our goal
is to do this with the smallest amount of estimation variance possible, that is, to estimate θ in a
statistically efficient way. Standard asymptotic theory (cf. van der Vaart, 2007, Chapter 8) shows
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KALININ STEINBERGER

that a maximum likelihood estimator θ̂(mle)
n based on Z1, . . . , Zn achieves an asymptotic normal

distribution

√
n(θ̂(mle)

n − θ)
d−−−→

n→∞
N(0, Iθ(QP)−1)

where the inverse of the Fisher-Information

Iθ(QP) := EZ∼QPθ

[(
∂ logQPθ(Z)

∂θ

)2
]

is the smallest variance achievable by regular estimators (van der Vaart, 2007, Theorem 8.8). Thus,
to minimize asymptotic variance, we should solve the optimization problem

max
Q

Iθ(QP) subject to Q ∈ Qϵ. (1)

This is a very challenging optimization problem because the set of Markov kernels Qϵ is a huge,
non-parametric set and we have to even search over all possible output spaces (Z,G) from which Q
can draw Zi. Furthermore, it turns out that for fixed output space (Z,G) the mapping Q 7→ Iθ(QP)
is convex, but we are trying to maximize this objective function. Hence, we may be confronted
with numerous local and global optima at the boundary of the feasible set Qϵ. Steinberger (2024)
provided a numerical scheme for approximately solving (1) based on a linear program representation
of Kairouz et al. (2016). However, the runtime of the linear program scales exponentially in the
accuracy of approximation. Steinberger (2024) also showed that indeed, [supQ∈Qϵ

Iθ(QP)]−1 is
the smallest possible asymptotic variance among all (sequentially interactive) locally differentially
private and regular estimators. Here, regular means that the scaled estimation error converges in
distribution to a limiting distribution for all local parameters θn = θ + h/

√
n (see Theorem 2

below).
Our main contribution is to show that the following simple binary privacy mechanism is an exact

solution of (1) in the case where the privacy parameter ϵ is sufficiently small: Given that Xi = x,
we generate Zi by

Zi =

{
sgn(x− θ) with probability pϵ

−sgn(x− θ) with probability 1− pϵ,

where pϵ :=
eϵ

1+eϵ and sgn(0) := 1. In other words, for z ∈ {−1, 1} and x ∈ R, we set

Q
sgn
θ,ϵ ({z}|x) := P (Zi = z|Xi = x) =

{
pϵ, if z = sgn(x− θ),

1− pϵ, if z ̸= sgn(x− θ).
(2)

Notice that this mechanism can also be represented as a composition Q
sgn
θ,ϵ = QRR

ϵ Tθ, where
Tθ(x) := sgn(x − θ) and QRR

ϵ is the randomized response mechanism of Warner (1965) that flips
the sign of the input with probability 1 − pϵ. In particular, we easily conclude that Qsgn

θ,ϵ ∈ Qϵ. We
can now state and prove the following result.

Theorem 1 If ϵ ≤ 0.67 then

Iθ(QP) ≤ Iθ(Q
sgn
θ,ϵP) =

2

π

(eϵ − 1)2

(eϵ + 1)2
,

for all θ ∈ R and all Q ∈ Qϵ. In particular, the sign mechanism solves (1).
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EFFICIENT, LOCALLY PRIVATE MEAN ESTIMATION

Our proof is based on the idea of quantizing the normal distribution and solving the problem of
maximizing the private Fisher Information for discrete distributions simultaneously for all quanti-
zation levels. We apply results from Kairouz et al. (2016) and a delicate duality argument to solve
the discrete case. The main steps of the proof are collected in Subsection 2.1.

An obvious issue with the sign mechanism in (2) is that it depends on the unknown parameter
θ which we want to estimate. By incorporating the sign mechanism into a two-stage scheme as in
Steinberger (2024) we end up with the following procedure for asymptotically efficient parameter
estimation: Split the agents into two groups of size n1 and n2 := n−n1 such that lim n1

n = 0.1 We
use the first group to get a consistent but not necessarily efficient estimate of the unknown mean θ
and the second group to update the first-stage estimate to make it asymptotically efficient. The two
stages of the procedure are described below, where θ0 is an arbitrary initial guess for the unknown
mean θ.

1. • Apply the sign mechanism Q
sgn
θ0,ϵ

at the initial value θ0 to X1, . . . , Xn1 to obtain iid
sanitized data Zi ∼ Q

sgn
θ0,ϵ

Pθ, i = 1, . . . , n1.

• Compute

θ̃n1 =

{
θ0 − Φ−1

(
1
2 − 1

2
eϵ+1
eϵ−1 Z̄n1

)
, if |Z̄n1 | < eϵ−1

eϵ+1 ,

θ0, else,
(3)

where Φ is the cumulative distribution function of the standard normal distribution and
Z̄n1 = 1

n1

n1∑
i=1

Zi.

2. • Apply the sign mechanism Q
sgn
θ̃n1 ,ϵ

at the first stage estimate θ̃n1 to the data Xn1+1, . . . , Xn

in the second group to generate values Zi ∼ Q
sgn
θ̃n1 ,ϵ

Pθ, i = n1 + 1, . . . , n.

• Compute

θ̂n =

{
θ̃n1 − Φ−1

(
1
2 − 1

2
eϵ+1
eϵ−1 Z̄n2

)
, if |Z̄n2 | < eϵ−1

eϵ+1 ,

θ̃n1 , else,
(4)

where Z̄n2 = 1
n2

n∑
i=n1+1

Zi.

Relying on our main Theorem 1, we can show that the above two-stage estimation procedure
is regular and asymptotically achieves the minimal variance. See Subsection 2.2 for the proof. Let
Rθ denote the distribution of the full sanitized data Z1, . . . , Zn when the true unknown parameter
is θ ∈ R.

Theorem 2 If ϵ ≤ 0.67 then the two-stage locally private estimation procedure described above
satisfies

√
n
(
θ̂n − [θ + h/

√
n]
) Rθ+h/

√
n−−−−−−→

n→∞
N

0,

[
sup
Q∈Qϵ

Iθ(QP)

]−1
 , ∀h ∈ R.

1. We parametrize n1 = n1(n) by n such that all limits are understood as n → ∞.
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Notice that the two-stage estimator θ̂n depends on the choice of initial value θ0 and on the
size n1 of the first group. Hence, θ0 and n1 are tuning parameters in our estimation procedure. In
Section 3, we investigate the impact of θ0 and n1 on the performance of our locally private estimator
in a finite sample simulation study.

1.1. Related Literature

Local differential privacy originated about 20 years ago (cf. Dinur and Nissim, 2003; Dwork and
Nissim, 2004; Dwork et al., 2006; Dwork, 2008; Evfimievski et al., 2003) and has since become
an incredibly popular way of data privacy protection when there is no trusted third party available.
Despite its popularity, some of the most basic learning problems, such as the one considered here,
have not been fully solved. Much attention has recently been paid to discrete distribution estimation
and deriving upper bounds on the estimation error. For instance, Wang et al. (2016) have suggested
an optimal mechanism for mutual information maximization for discrete distributions under LDP.
Ye and Barg (2018) are studying the locally private minimax risk for discrete distributions. Nam
and Lee (2022) is perhaps closer to our work. They consider the problem of maximizing a Fisher-
Information in the local privacy mechanism, but they restrict to the 1-bit communication constraint
which, for our purpose, is an oversimplified case. Barnes et al. (2020) also investigate and bound
Fisher-Information when original data are perturbed using a differentially private randomization
mechanism. But they have not attempted to find an optimal randomization mechanism or an efficient
estimation procedure. Gaussian mean estimation is considered by Joseph et al. (2019) and they also
use a two-stage procedure for parameter estimation. They obtain high-probability bounds for the
estimation error, which is of order n−1/2 for the two-round protocol, but unlike our work, they
don’t obtain the optimal asymptotic constant. The conceptual foundation to the problem of finding
the optimal Fisher-Information mechanism was laid by Steinberger (2024). However, while in that
work the optimal mechanism and locally private estimation procedure have to be approximated by a
computationally expensive numerical optimization routine, we here derive an exact and closed form
privacy mechanism and estimator.

2. Proof of main results

2.1. Proof of Theorem 1

In this section, we prove Theorem 1. We first follow the approach of Steinberger (2024) and quantize
the Fisher-Information to then solve a discrete version of (1). However, while Steinberger (2024)
had to rely on a numerical algorithm for the discrete optimization, which has exponential runtime
in the resolution of the discretization, we here solve all the discrete problems exactly by providing
a closed form solution and show that it is the same for all resolution levels k of the approximation.
We then conclude that the solution to the simplified discrete problems is also the global solution.
Notice that all the regularity conditions imposed by Steinberger (2024) are satisfied for the Gaussian
location model P = {N(θ, 1) : θ ∈ R} that we consider here (cf. Section 5.2 in Steinberger, 2024).
In particular, the Fisher-Information Iθ(QP) is well defined and finite for any privacy mechanism
Q ∈ Qϵ.

4



EFFICIENT, LOCALLY PRIVATE MEAN ESTIMATION

2.1.1. DISCRETE APPROXIMATION

We begin by defining what is called a consistent quantizer in Steinberger (2024, cf. Definition 3
and Section 5 in that reference). For an even positive integer k and for j = 1, . . . , k − 1, let
Bj := (xj−1, xj ] and Bk := (xk−1,∞), where xj := Φ−1(j/k) and Φ is the cdf of the standard
normal distribution. Now set Tk,θ(x) :=

∑k
j=1 j1Bj (x− θ). Notice that Tk,θ maps the real line R

into the discrete set [k] := {1, . . . , k}, hence, it is called a quantizer. We write Tk,θ0P := {rθ,θ0 :
θ ∈ R} for the resulting quantized model, where rθ,θ0(j) := Pθ(T

−1
k,θ0

({j})) = Pθ(Bj + θ0) =
Φ(xj + θ0− θ)−Φ(xj−1+ θ0− θ) is the probability mass function of the quantized data Tk,θ0(Xi)
and we set Φ(−∞) := 0, Φ(∞) := 1, ϕ(x) := Φ′(x) and ϕ(±∞) := 0. Lemmas 4.7, 4.9, 5.1 and
5.2 in Steinberger (2024) show that for every even k and every θ ∈ R

sup
Q∈Qϵ(R)

Iθ(QP) ≤ sup
Q∈Qϵ([k])

Iθ(QTk,θP) + ∆k = sup
Q∈Qϵ([k]→[k])

Iθ(QTk,θP) + ∆k, (5)

where ∆k → 0 as k → ∞, Qϵ([k]) is the set of ϵ-private mechanisms that take inputs from [k]
and produce random outputs from some arbitrary measurable space (Z,G), and Qϵ([k] → [k]) are
the ϵ-private mechanisms whose inputs and outputs both take values in [k]. Thus, the elements of
Qϵ([k] → [k]) can be represented as k× k column stochastic matrices with the property that Qij ≤
eϵQij′ , for all i, j, j′ ∈ [k]. Since obviously supQ∈Qϵ([k]→[k]) Iθ(QTk,θP) ≤ supQ∈Qϵ

Iθ(QP), (5)
yields

sup
Q∈Qϵ([k]→[k])

Iθ(QTk,θP) → sup
Q∈Qϵ

Iθ(QP), ∀θ ∈ R,

as k → ∞, k even. In the remainder of the proof, we will show that supQ∈Qϵ([k]→[k]) Iθ(QTk,θP) =

Iθ(Q
sgn
θ,ϵP) for every even k. Thus, the sign mechanism in (2) must be a solution of (1).

2.1.2. EVALUATING THE QUANTIZED OBJECTIVE FUNCTION

Next, we provide an explicit expression for the quantized private Fisher-Information Iθ(QTk,θ0P),
for arbitrary Q ∈ Qϵ([k] → [k]). The quantized and Q-privatized model QTk,θ0P = {mθ,θ0 :

θ ∈ R} can be expressed via its probability mass functions mθ,θ0(i) :=
∑k

j=1Qijrθ,θ0(j), i ∈ [k].
Thus, we have

Iθ(QTk,θ0P) = EZ∼QTk,θ0
Pθ

[(
∂ logmθ,θ0(Z)

∂θ

)2
]
=

k∑
i=1

ṁθ,θ0(i)
2

mθ,θ0(i)
,

where ṁθ,θ0(i) :=
∂
∂θmθ,θ0(i) =

∑k
j=1Qij [ϕ(xj−1 + θ0 − θ)− ϕ(xj + θ0 − θ)] and the ratio is to

be understood as equal to zero if the denominator mθ,θ0(i) is zero. Abbreviating yj := ϕ(xj−1) −
ϕ(xj), we arrive at

Iθ(QTk,θP) =

k∑
i=1

(∑k
j=1Qijyj

)2
1
k

∑k
j=1Qij

=

k∑
i=1

µ(QT
i· ), (6)

for µ(v) := k (vT y)2

vT 1
, v ∈ Ck := {u ∈ Rk

+ : uj ≤ eϵuj′ ,∀j, j′ ∈ [k]}, and µ(0) := 0. In
particular, we see that Iθ(QTk,θP) = I0(QTk,0P) for all θ ∈ R. For later use we note that yj =

−yk−j+1,
∑k/2

j=1 yj = −ϕ(0) = −
∑k

j=k/2+1 yj and
∑k

j=1 yj = 0.

5
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We conclude this subsection by computing the Fisher-Information for the sign mechanism in (2).
Use the fact that Qsgn

θ,ϵ = QRR
ϵ ◦ T2,θ ∈ Qϵ([2] → [2]), where the randomized response mechanism

can be represented in matrix form as

QRR
ϵ =

( eϵ

1+eϵ
1

1+eϵ
1

1+eϵ
eϵ

1+eϵ

)
.

Thus,

Iθ(Q
sgn
θ,ϵP) = Iθ(Q

RR
ϵ T2,θP) =

2∑
i=1

(∑2
j=1[Q

RR
ϵ ]ijyj

)2
1
2

∑2
j=1[Q

RR
ϵ ]ij

=
1

1 + eϵ

(
ϕ(0)2(1− eϵ)2

1
2(1 + eϵ)

+
ϕ(0)2(eϵ − 1)2

1
2(1 + eϵ)

)
=

2

π

(eϵ − 1)2

(eϵ + 1)2
.

2.1.3. REFORMULATION AS A LINEAR PROGRAM

From Lemma 4.5 of Steinberger (2024), Q 7→ I0(QTk,0P) is a continuous, sublinear and convex
function on the compact set Qϵ([k] → [k]) ⊆ Rk×k. Therefore, a maximizer exists and Theorems 2
and 4 of Kairouz et al. (2016) allow us to conclude that the maximization problem

max
Q

I0(QTk,0P) subject to Q ∈ Qϵ([k] → [k]) (7)

has the same optimal value as the linear program

max
α∈R2k

2k∑
j=1

µ(S
(k)
·j )αj

s.t. S(k)α = 1

α ≥ 0,

(8)

where S(k) is a staircase matrix defined as follows: For 0 ≤ j ≤ 2k − 1 consider its binary
representation bj ∈ {0, 1}k with j =

∑k
i=1 bij2

k−i. Then (S(k))i,j+1 := bij(e
ϵ − 1) + 1. For

instance, with k = 4 we get the following matrix:

S(4) =


1 1 1 1 1 1 1 1 eϵ eϵ eϵ eϵ eϵ eϵ eϵ eϵ

1 1 1 1 eϵ eϵ eϵ eϵ 1 1 1 1 eϵ eϵ eϵ eϵ

1 1 eϵ eϵ 1 1 eϵ eϵ 1 1 eϵ eϵ 1 1 eϵ eϵ

1 eϵ 1 eϵ 1 eϵ 1 eϵ 1 eϵ 1 eϵ 1 eϵ 1 eϵ

 .

Moreover, if α∗ is a solution of (8), then Q∗ = [S(k)diag(α∗)]T ∈ R2k×k is a solution of (7). From
Kairouz et al. (2016, Theorem 2) we know that an optimal mechanism Q∗ has at most k non-zero
rows. Since zero rows do not contribute to the Fisher-Information (6), we can remove them from
Q∗ to obtain Q∗ ∈ Rk×k.

Finally, notice that α∗
j := (1+eϵ)−1 for j ∈ {2k/2, 2k−2k/2+1} and α∗

j := 0 else, is a feasible
point of (8), because b2k/2 = 1− b2k−2k/2+1 and thus

S(k)α∗ =
1

1 + eϵ
[
b2k/2(e

ϵ − 1) + 1+ b2k−2k/2+1(e
ϵ − 1) + 1

]
= 1.

6



EFFICIENT, LOCALLY PRIVATE MEAN ESTIMATION

Furthermore, α∗ achieves an objective function value of

1

1 + eϵ
[
µ(b2k/2(e

ϵ − 1) + 1) + µ(b2k−2k/2+1(e
ϵ − 1) + 1)

]
=

2

1 + eϵ

[
ϕ(0)2(eϵ − 1)2

eϵ + 1
+

ϕ(0)2(eϵ − 1)2

eϵ + 1

]
= Iθ(Q

sgn
θ,ϵP).

Hence, we have supQ∈Qϵ([k]→[k]) Iθ(QTk,θP) = supQ∈Qϵ([k]→[k]) I0(QTk,0P) ≥ Iθ(Q
sgn
θ,ϵP), for

every even k > 0. It remains to establish an upper bound, which we do by a duality argument.

2.1.4. GUESSING A DUAL SOLUTION

In this section, we study the dual of the LP in (8). By weak duality, any feasible value of the dual
provides an upper bound on the objective function of the primal problem. Hence, the challenge is
to identify a feasible value of the dual that achieves an objective function equal to Iθ(Q

sgn
θ,ϵP). The

dual program reads as follows:

min
β∈Rk

1Tβ

s.t. (S(k))Tβ ≥ µ
(9)

where µ := (µj)
2k
j=1 := (µ(S

(k)
·j ))2

k

j=1 ∈ R2k . The proof of Theorem 1 is finished if we can identify
a feasible point β ∈ Rk of (9) satisfying 1Tβ =

∑k
j=1 βj =

2
π t

2
ϵ , where tϵ :=

eϵ−1
eϵ+1 . Our guess for

such a β∗ ∈ Rk is

β∗
j := −2t2ϵ

πk
+ |yj |t2ϵ

√
8

π
.

This clearly satisfies 1Tβ∗ = 2
π t

2
ϵ . It is the main technical challenge of the proof to show that β∗ is

a feasible point of (9).
For fixed j ∈ [2k], we have to verify (S

(k)
·j )Tβ∗ ≥ µ(S

(k)
·j ). It will be convenient to partition the

index set [k] as follows [k] = I01 ∪ I0eϵ ∪ I11 ∪ I1eϵ where I01 = {i| i ≤ k
2 , S

(k)
i,j = 1}, I0eϵ = {i| i ≤

k
2 , S

(k)
i,j = eϵ} and I11 , I

1
eϵ defined similarly for the second half of indices i = k

2 + 1, . . . , k. Then

we can rewrite the required inequality (S
(k)
·j )Tβ∗ ≥ µ(S

(k)
·j ) as follows:

∑
i∈I01

β∗
i + eϵ

∑
i∈I0eϵ

β∗
i +

∑
i∈I11

β∗
i + eϵ

∑
i∈I1eϵ

β∗
i ≥

(∑
i∈I01

yi + eϵ
∑

i∈I0eϵ
yi +

∑
i∈I11

yi + eϵ
∑

i∈I1eϵ
yi

)2

1
k

(
|I01 |+ |I11 |+ eϵ|I0eϵ |+ eϵ|I1eϵ |

) .

For convenience let us denote m1 = |I01 |, m2 = |I1eϵ |, a1 =
√
2π
∑
i∈I01

|yi|, a2 =
√
2π

∑
i∈I1eϵ

|yi|

such that m1,m2 ≤ k
2 and a1, a2 ∈ [0, 1]. With this new notation, we can rewrite the sum on the

left-hand-side as

(1− eϵ)
∑
i∈I01

β∗
i + (eϵ − 1)

∑
i∈I1eϵ

β∗
i + eϵ

k/2∑
i=1

β∗
i +

k∑
i=k/2+1

β∗
i (10)

7
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and the ratio on the right-hand-side as(
eϵ−1√

2π
a1 +

eϵ−1√
2π

a2 − eϵ√
2π

+ 1√
2π

)2
1
k (k/2 +m1 −m2 + eϵ(k/2 +m2 −m1))

. (11)

Substituting the values for β∗ we simplify the expression in (10) to obtain

(1− eϵ)
∑
i∈I01

β∗
i + (eϵ − 1)

∑
i∈I1eϵ

β∗
i + eϵ

k/2∑
i=1

β∗
i +

k∑
i=k/2+1

β∗
i

= (1− eϵ)
∑
i∈I01

[
−2t2ϵ
πk

+ |yi|t2ϵ

√
8

π

]
+ (eϵ − 1)

∑
i∈I1eϵ

[
−2t2ϵ
πk

+ |yi|t2ϵ

√
8

π

]
+ (1 + eϵ)

t2ϵ
π

= (1− eϵ)
2t2ϵ
π

(
−m1

k
+ a1

)
+ (eϵ − 1)

2t2ϵ
π

(
−m2

k
+ a2

)
+ (1 + eϵ)

t2ϵ
π

= (eϵ − 1)
2t2ϵ
π

[
m1 −m2

k
+ a2 − a1

]
+ (1 + eϵ)

t2ϵ
π
.

Next, we simplify (11) to get

(
eϵ−1√

2π
a1 +

eϵ−1√
2π

a2 − eϵ√
2π

+ 1√
2π

)2
1
k

(
k
2 +m1 −m2 + eϵ(k2 +m2 −m1)

) =
(a1 + a2 − 1)2 (eϵ − 1)2

2π
k

(
k
2 (1 + eϵ) + (m2 −m1)(eϵ − 1)

)
=

(a1 + a2 − 1)2(eϵ − 1)2

π(1 + eϵ)
(
1 + 2tϵ

m2−m1
k

) .
After these simplifications, we see that the inequality we need to verify is given by

(eϵ − 1)
2t2ϵ
π

[
m1 −m2

k
+ a2 − a1

]
+ (1 + eϵ)

t2ϵ
π

≥ (a1 + a2 − 1)2(eϵ − 1)2

π(1 + eϵ)
(
1 + 2tϵ

m2−m1
k

) .
Dividing by (1 + eϵ)t2ϵ/π, this can be further simplified to

2tϵ(a2 − a1) + 4t2ϵ
m2 −m1

k
(a2 − a1)− 4t2ϵ

(
m2 −m1

k

)2

− (a1 + a2)
2 +2(a1 + a2) ≥ 0. (12)

Without loss of generality, we can assume a1 + a2 ≤ 1; otherwise, we could have chosen
a1 =

√
2π
∑
i∈I11

|yi| and a2 =
√
2π

∑
i∈I0eϵ

|yi|, maintaining the same inequality due to the symmetry

of β∗
i = β∗

k+1−i and antisymmetry in yi = −yk+1−i , but with the sum a1+a2 ≤ 1, because the total

sum equals
√
2π

k∑
i=1

|yi| = 2. Given this, we immediately get −(a1+a2)
2+2(a1+a2) ≥ a1+a2.

Further more, it is obvious that

2tϵ(a2 − a1) ≥ −2tϵ(a1 + a2), −4t2ϵ

(
m2 −m1

k

)2

≥ −4t2ϵ
m2

1 +m2
2

k2
,

4t2ϵ
m2 −m1

k
(a2 − a1) ≥ −2t2ϵ

∣∣∣∣m2 −m1

k/2

∣∣∣∣ · |a2 − a1| ≥ −2t2ϵ (a1 + a2).

8
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Now, combining these four inequalities, we see that if

−2tϵ(a2 + a1)− 2t2ϵ (a1 + a2)− 4t2ϵ
m2

1 +m2
2

k2
+ a1 + a2 ≥ 0

holds true, then also (12) is satisfied. But this new inequality in the previous display is equivalent to

a1 + a2 ≥
4t2ϵ

1− 2tϵ − 2t2ϵ

m2
1 +m2

2

k2
, (13)

provided that 1 − 2tϵ − 2t2ϵ > 0. To proceed, we establish two additional lemmas to get the lower
bounds for a1 and a2 in terms of m1 and m2 respectively.

Lemma 3 For any k, the sequence yj = ϕ(Φ−1((j − 1)/k)) − ϕ(Φ−1(j/k)), j = 1, . . . , k, is
increasing.

Proof For x ∈ (1, k], define g(x) := ϕ(Φ−1((x−1)/k))−ϕ(Φ−1(x/k)) and g(1) := −ϕ(Φ−1(1/k).
Since g is continuous on [1, k], it suffices to show that g is strictly increasing on (1, k). Using the
fact that ϕ′(x) = (−x)ϕ(x) and the inverse function theorem we get

g′(x) =
1

k

(
ϕ′

ϕ
◦ Φ−1((x− 1)/k)− ϕ′

ϕ
◦ Φ−1(x/k)

)
=

1

k

(
Φ−1(x/k)− Φ−1((x− 1)/k)

)
> 0.

Thus, g is strictly increasing on (1, k).

Lemma 4 For x ∈ [0, 12 ] we have

ϕ(0)− ϕ

(
Φ−1

(
1

2
+ x

))
≥
√

π

2
x2.

Proof For x ∈ [0, 12 ], define g(x) := ϕ(0)−ϕ
(
Φ−1

(
1
2 + x

))
−
√

π
2x

2 then g(0) = 0, g(12) = +∞.
Since g is continuous on [0, 12 ], it suffices to show that g is strictly increasing on (0, 12). Using the
fact that ϕ′(x) = (−x)ϕ(x) and the inverse function theorem we get

g′(x) = −ϕ′

ϕ
◦ Φ−1

(
1

2
+ x

)
−
√
2πx = Φ−1

(
1

2
+ x

)
−
√
2πx,

g′′(x) =
1

ϕ(Φ−1
(
1
2 + x

)
)
−
√
2π ≥ 0.

Since the first derivative is equal to zero at zero and non-decreasing, we see that the function g itself
must be non-decreasing.

By combining these two lemmas, we can easily show that

9
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a2 =
√
2π
∑
i∈I1eϵ

yi ≥
√
2π

k/2+m2∑
i=k/2+1

yi =
√
2π

(
ϕ(0)− ϕ

(
Φ−1

(
1

2
+

m2

k

)))
≥ π

m2
2

k2
.

A similar lower bound holds for a1 as well, namely a1 ≥ π
m2

1
k2

. Therefore, we obtain the required
inequality (13) provided that

a1 + a2 ≥ π
m2

1 +m2
2

k2
≥ 4t2ϵ

1− 2tϵ − 2t2ϵ

m2
1 +m2

2

k2
,

which is true whenever
4t2ϵ

1− 2tϵ − 2t2ϵ
≤ π.

But since ϵ 7→ tϵ is increasing this is seen to hold for all 0 ≤ ϵ ≤ 0.67, for which we also have
1− 2tϵ − 2t2ϵ > 0. This finishes the proof.

2.2. Proof of Theorem 2

Rather than relying on Theorem 4.12 in Steinberger (2024) and checking all their assumptions,
we here present a direct proof that also has the advantage of being self-contained. We begin by
showing the consistency of first and second-stage estimators. For convenience, fix h ∈ R and set
θn := θ+h/

√
n. All probabilities, expectations, variances and stochastic convergence results below

are with respect to Rθn .

2.2.1. CONSISTENCY

Showing consistency of the first-stage estimator (3) is rather straight forward, because Z1, . . . , Zn1

are iid with values in {−1, 1} and

E[Z1] = P (Z1 = 1)− P (Z1 = −1) = 2P (Z1 = 1)− 1

= 2
eϵ

1 + eϵ
− 2

eϵ − 1

eϵ + 1
Φ(θ0 − θn)− 1 =

eϵ − 1

eϵ + 1
(1− 2Φ(θ0 − θn)).

Thus, by Markov’s inequality, Z̄n1 converges in probability to eϵ−1
eϵ+1(1−2Φ(θ0−θ)) ∈ (− eϵ−1

eϵ+1 ,
eϵ−1
eϵ+1),

and thus P (|Z̄n1 | < eϵ−1
eϵ+1) → 1 as n → ∞ and θ̃n1 converges to θ in probability, by the continuous

mapping theorem.
Consistency of (4) can be shown in a similar way, using the conditional Markov inequality. In

view of consistency of θ̃n1 it suffices to show that Z̄n2 = 1
n2

∑n
i=n1+1 Zi → 0 in probability as

n → ∞. Conditionally on θ̃n1 , the Zn1+1, . . . , Zn are iid. The conditional expectation is computed
in the same way as above, that is

E[Z̄n2 |θ̃n1 ] = E[Zn|θ̃n1 ] =
eϵ − 1

eϵ + 1
(1− 2Φ(θ̃n1 − θn)),

10
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and it converges to zero in probability as n → ∞. The Zi’s only take values 1 or −1 and thus their
conditional variance is bounded by 1. Now

P (|Z̄n2 | > ε) ≤ P (|Z̄n2 − E[Z̄n2 |θ̃n1 ]|+ |E[Z̄n2 |θ̃n1 ]| > ε)

≤ E
[
P
(
|Z̄n2 − E[Z̄n2 |θ̃n1 ]| >

ε

2

∣∣∣θ̃n1

)]
+ P

(
|E[Z̄n2 |θ̃n1 ]| >

ε

2

)
≤ 4

ε2
E
[
1 ∧ Var[Z̄n2 |θ̃n1 ]

]
+ P

(
|E[Zn|θ̃n1 ]| >

ε

2

)
≤ 4

ε2n2
+ P

(
|E[Zn|θ̃n1 ]| >

ε

2

)
−−−→
n→∞

0.

2.2.2. ASYMPTOTIC NORMALITY

For asymptotic normality, first notice that we already showed above that |Z̄n1 | and |Z̄n2 | are bounded
by eϵ−1

eϵ+1 with asymptotic probability one. Hence, it suffices to proceed on the event where both of
these absolute values are appropriately bounded. Write G(p) := Φ−1(p) and consider the scaled
estimation error of (4), that is

√
n(θ̂n − θn) = −

√
n

(
Φ−1

(
1

2
− 1

2

eϵ + 1

eϵ − 1
Z̄n2

)
− (θ̃n1 − θn)

)
= −

√
n

(
G

(
1

2
− 1

2

eϵ + 1

eϵ − 1
Z̄n2

)
−G(Φ(θ̃n1 − θn))

)
.

By a first order Taylor expansion and writing An := 1
2−

1
2
eϵ+1
eϵ−1 Z̄n2 = 1

n2

∑n
i=n1+1

(
1
2 − 1

2
eϵ+1
eϵ−1Zi

)
and Bn := Φ(θ̃n1 − θn), we get

√
n(G(An)−G(Bn)) = G′(Bn)

√
n(An −Bn) +

1

2

√
n

∫ An

Bn

G′′(t)(An − t)2dt. (14)

From our results of the previous subsection we see that An → 1
2 and Bn → 1

2 in probability, and
since G′ is continuous on [0, 1] we have G′(Bn) → G′(12) = [ϕ◦Φ−1(12)]

−1 =
√
2π, in probability.

Next, we show that
√
n(An−Bn) → N(0, 14(

eϵ+1
eϵ−1)

2) in distribution. For i = n1+1, . . . , n, define
Yi :=

1
2 − 1

2
eϵ+1
eϵ−1Zi − Φ(θ̃n1 − θn) and note that conditional on θ̃n1 they are iid with conditional

mean zero and conditional variance

Var[Yi|θ̃n1 ] =
1

4

(
eϵ + 1

eϵ − 1

)2
[
1−

(
eϵ − 1

eϵ + 1
(1− 2Φ(θ̃n1 − θn))

)2
]

i.p.−−−→
n→∞

1

4

(
eϵ + 1

eϵ − 1

)2

.

Moreover, Var[Yi|θ̃n1 ] ≥ 1
4

(
eϵ+1
eϵ−1

)2
[1 − ( e

ϵ−1
eϵ+1)

2] and E[|Yi|3|θ̃n1 ] ≤ 3
2 + 1

2
eϵ+1
eϵ−1 . Thus, from the

Berry-Esseen bound (cf. Berry, 1941, Theorem 1) applied to the conditional distribution, we get for
every t ∈ R,∣∣∣∣∣∣P

√
n2

An −Bn√
Var(Yn|θ̃n1)

≤ t

− Φ(t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣P
√

n2

n∑
i=n1+1

Yi√
Var(Yi|θ̃n1)

≤ t

− Φ(t)

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣P
√

n2

n∑
i=n1+1

Yi√
Var(Yi|θ̃n1)

≤ t

∣∣∣∣∣θ̃n1

− Φ(t)

∣∣∣∣∣∣ ≤ 1.88(32 + 1
2
eϵ+1
eϵ−1)

1
8

(
eϵ+1
eϵ−1

)3
[1− ( e

ϵ−1
eϵ+1)

2]
3
2
√
n2

.
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Figure 1: Left panel: Scaled MSE of the private estimator as a function of the number n1 of first-
stage samples. Right panel: Scaled MSE of the private estimator as a function of the
initial guess θ0.

Applying Slutski’s theorem and noting that n/n2 → 1, we get the desired convergence of
√
n(An−

Bn) → N(0, 14(
eϵ+1
eϵ−1)

2) in distribution. Hence, G′(Bn)
√
n(An − Bn) → N(0, π2 (

eϵ+1
eϵ−1)

2). From
Theorem 1 we see that this is the optimal asymptotic variance. Thus, the proof is finished if we
can show that the remainder term in (14) converges to zero in probability. But this is easily seen,
because on the event where An, Bn ∈ [14 ,

3
4 ], which has asymptotic probability one, the remainder

term is bounded in absolute value by

1

2
|
√
n(An −Bn)||An −Bn|2 sup

t∈[ 1
4
, 3
4
]

|G′′(t)| i.p.−−−→
n→∞

0.

3. Experiments

In this section, we provide numerical experiments to investigate the finite sample performance of our
two-stage locally private estimation procedure described in (3) and (4) in dependence on the tuning
parameters θ0 ∈ R and n1 ∈ N, for different sample sizes n and ϵ = 0.6. For the plots, we generated
200000 Montecarlo samples and computed the 95% confidence intervals via bootstrapping. In the
left panel of Figure 1, we plot the scaled mean squared error (MSE) of θ̂n as a function of the
number n1 of samples in the first stage of our private estimation procedure. From the plots, we see
that a proper choice of n1 is crucial to get a small MSE. Especially too small values of n1 must be
avoided.

In the right panel of Figure 1, we plot the scaled MSE as a function of the difference θ0 − θ,
where n1 was chosen such that the corresponding MSE function in the left panel is minimized. The
results are not surprising. The MSE increases as the initial guess moves away from the true value.
Notice that our results do not provide uniform convergence in θ, and in fact it is known that with
differential privacy it is impossible to achieve uniformity. Thus, extreme values of the parameter θ,
in the sense that |θ0 − θ| is large, will be harder to estimate.
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